Teaching Dr. Talitha M. Washington

TEACHING STATEMENT

To teach effectively, one must understand, motivate, and challenge students. Through formal interactions in the classroom and informal discussions in the office, I aspire to inspire students to explore a variety of mathematical concepts and applications.

In my courses, I want students to grow mathematically, academically, and socially in an atmosphere that is both stimulating and adaptive to their diverse needs. I find that encouraging students in the classroom to contribute to discussions and to present homework solutions have been pivotal in increasing student involvement and enthusiasm. Throughout the lecture, I incorporate just enough humor to make the experience enjoyable and productive. With this style of teaching, students take an active role in their learning in a relaxed environment, while I curtail my role to that of mathematical guide and motivator. I believe that students learn not only by what is shown to them, but by what they accomplish.

In many of the courses that I have taught, I assigned writing assignments. Each group would type a report which includes answers to preassigned questions. Since this would be the first time students would write a scientific paper, I would encourage the students to come to me for assistance with revisions. I also encouraged students to utilize the writing center on campus. By working in groups, students would learn how to talk about mathematics in a technical sense, and then organize the information into a technical paper. Writing can be a powerful tool to reinforce concepts.

As a result of my research in applied mathematics, I have been able to expose undergraduates to mathematical research. For example, I enhanced students' understanding of calculus through projects that applied the subject to fundamental topics in the sciences. Over the years, I have created a number of topics courses in the areas of mathematical biology and scientific computing which exposed undergraduates to current trends in the field. Topics include utilizing mathematics to describe oscillations made by the Tacoma Narrows Bridge on the days of its collapse, the spread of infectious diseases, and systems in synthetic biology. As a result, the students find that the material "comes alive;" they can see interesting ways that mathematics describes the world around them. I look forward to developing more research-based courses so that students can both understand the applicability the mathematics and learn to appreciate the beauty of the subject.

I am accessible to students by holding weekly office hours plus appointments, conducting evening and weekend review sessions, and posting teaching materials online via *Blackboard*. Students frequent my office for consultation on scheduling, balancing personal interests with educational responsibilities, and ways to attain academic success. Often, students will visit just to chat as they can be quite anxious about their life's trajectory. I am sympathetic to students' needs and help them seek positive solutions especially in the midst of personal and academic turmoil. I ultimately assist students as they define their path in life while encouraging them not to give up on their dreams.

I believe it takes more than a single individual to make a difference in the lives of students. Therefore, I have learned the value of being a team player and the importance of communicating with colleagues, students, and administrators so that I will be able to provide the best education possible for my students. I take great pride in being a teacher and a motivator, and feel my strengths and talents are well utilized in this stimulating career. As I grow as an instructor and mentor, I hope to continue to convey my enthusiasm for acquiring knowledge and give students tools that will help them grow as learners.

Duke University, Durham, North Carolina, USA.

<i>Spring 2002</i> MATH 31*	Laboratory Calculus I
Fall 2002	
MATH 31L	Laboratory Calculus I
MATH 131	Elementary Differential Equations

The College of New Rochelle, New Rochelle, New York, USA.

Fall 2003	
MTH 109	Quantitative Reasoning
MTH 111	College Mathematics
MTH 116	Precalculus/Elementary Functions
MTH 121	Calculus I

Spring 2004

MTH 117	Elementary Statistics
MTH 122	Calculus II
MTH 214	Differential Equations
MTH 330	Numerical Analysis

Fall 2004

MTH 100*	Intermediate Algebra
MTTI 191	Calculus I

MTH 121 Calculus I

MTH 390 Seminar in Mathematics: Geometry

Spring 2005

MTH 121 Calculus I MTH 122 Calculus II MTH 256 Discrete Mathematics

University of Evansville, Evansville, Indiana, USA.

Fall 2005	
MATH 105^*	College Algebra
MATH 211	Calculus I with Precalculus Review
<i>Spring 2006</i> MATH 222 MATH 324*	Calculus II Differential Equations
Fall 2006	
MATH 323*	Calculus III
MATH 495	Senior Seminar: Mathematical Modeling
CE 499	Topics Course on Modeling the Tacoma Narrows Bridge

*Two sections taught

Spring 2007MATH 324*Differential EquationsMATH 373Numerical Methods	
Fall 2007MATH 134*Survey of CalculusMATH 495Senior Seminar: Mathematical Modeling	
Spring 2008MATH 202Mathematics for Elementary TeachersMATH 222*Calculus IIMATH 373Numerical Methods (Independent Study)DISC 300African American Experience: Law and Study	
Summer 2008 MATH 324 Differential Equations	
Fall 2008MATH 211Calculus I with Precalculus ReviewMATH 495Senior Seminar: Mathematical Modeling	
Spring 2009MATH 222*Calculus IIMATH 373Numerical Methods	
Summer 2009 MATH 134 Brief Calculus	
Fall 2009MATH 101*Mathematical IdeasMATH 355Foundations of Geometry	
Spring 2010MATH 202Mathematics for Elementary TeachersMATH 222*Calculus IIMATH 490Independent Study on Applied Differentiation	al Equations
Summer 2010 MATH 324 Differential Equations	
Fall 2010MATH 101Mathematical IdeasMATH 191Mathematical Modeling in Synthetic BiolMATH 222*Calculus II	ogy
Spring 2011MATH 101*Mathematical IdeasMATH 373Numerical Methods	

 $*Two\ sections\ taught$

Howard University,	Washington,	District of	Columbia,	USA.
--------------------	-------------	-------------	-----------	------

and University, washington, District of Columbia, USA.
Fall 2011FRSM 001Freshman Seminar Group Project AdvisorMATH 157Calculus IIMATH 164Numerical Analysis
Spring 2012MATH 156Calculus IMATH 192/450 G Topics in Applied Mathematics: Mathematical Biology
Fall 2012FRSM 001Freshman Seminar Group Project AdvisorMATH 006College Algebra IMATH 159Differential EquationsMATH 089Directed Readings in Honors for Juniors: Modeling Calcium Homeostasis
Spring 2013MATH 156Calculus IMATH 192/450GTopics in Applied Mathematics: Mathematical BiologyMATH 166Directed Readings: Discrete Programming in MATLAB and Proof WritingMATH 166Directed Readings: Stochastic Programming in Sage
Fall 2013MATH 156Calculus IMATH 222^G Real Analysis I
Spring 2014MATH 021Fundamental Concepts of Mathematics for Education IIMATH 223Real Analysis II
Fall 2014MATH 007Honors PrecalculusMATH 020Fundamental Concepts of Mathematics for Education I
Spring 2015MATH 021Fundamental Concepts of Mathematics for Education IIMath 450^G Topics in Applied Mathematics: Scientific Computing (with MATLAB)
Fall 2015MATH 020Fundamental Concepts of Mathematics for Education IMath 101Proof and Problem Solving IMath 247^G Numerical Analysis I (of Differential Equations with MATLAB)
Spring 2016MATH 006College Algebra IMATH 021Fundamental Concepts of Mathematics for Education IIMATH 166/290GDirected Readings: Introduction to Data Science with R/RStudio

Fall 2016

MATH 084/29 MATH 020 Math 158	96 ^G Data Science with R/RStudio Seminar Fundamental Concepts of Mathematics for Education I Calculus III
Spring 2017	
MATH 007	Precalculus
MATH 021	Fundamental Concepts of Mathematics for Education II
MATH 247^G	Numerical Analysis I (of Partial Differential Equations with MATLAB)

 G Indicates graduate-level course